
Volumetría Ácido Base (segunda parte)

- ✓ Revisión clase 1
- ✓ Ácidos y bases polifuncionales
- ✓ Distribución de especies químicas
- ✓ Curvas de titulación
- ✓ Diseño de una solución reguladora
- ✓ Titulación solventes no acuosos

Clase anterior:

- 1 Cálculo de pH en distintas situaciones
- 2 Concepto de concentración **FORMAL** y **MOLAR** de las especies disueltas
- 3 Curva de titulación:
 - Kmin < Keq
 - Error de indicador: salto de pH
 - Balance de masa para reconocimiento de las especies presentes y cálculo del pH
- 4 Construcción de la curva y elección del indicador

Curva de titulación de ad con BF

Cálculo de pH en distintas situaciones: ácido fuerte (AF) y ácido débil (ad)

1)
$$HCl \rightarrow H^+ + Cl^- \dots \rightarrow pH = -log[H^+]$$

2) HAc
$$\rightleftharpoons$$
 H⁺ + Ac⁻... Ka = $\frac{x^2}{Ca - x}$
Ca - x

Despreciando x :

$$[H^+] = \sqrt{Ka.Ca}$$

Cálculo de pH en distintas situaciones: base débil (bd)

3) NaAc
$$\rightarrow$$
 Na⁺ + Ac⁻

Cb - x

$$Ac^{-} + H_2O \rightleftharpoons HAc + OH^{-} \qquad [OH^{-}] = \frac{Kw}{[H^{+}]}$$

$$Kb = \frac{Kw}{Ka} = \frac{[HAc][OH^{-}]}{[Ac^{-}]} = \frac{\frac{Kw^{2}}{[H^{+}]^{2}}}{Cb - [OH^{-}]}$$

Despreciando y reordenando:

$$[H^+] = \sqrt{\frac{Kw.Ka}{Cb}}$$

Cálculo de pH en distintas situaciones: solución reguladora (SR) y Anfolito

4) Solución Reguladora Ejemplos:

$$HAc/Ac^{-} - H_{2}CO_{3}/H CO_{3}^{-} - H_{2}PO_{4}^{-}/H PO_{4}^{2-}$$

$$HAc + OH^{-} \rightleftharpoons Ac^{-} + H_{2}O$$

i:Ca_{inicial}

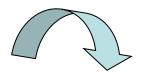
 $f:C_{\text{ácido conjugado}}$ $C_{\text{base conjugada}}$

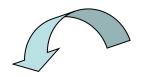
$$Ka = \frac{[H^+][Ac^-]}{[HAc]} \rightarrow [H^+] = Ka \frac{Ca}{Cb}$$
 (epecie ácida/especie básica)

5) Anfolito Ejemplos: NaHCO₃ - NaH₂PO4 o Na₂HPO4

$$[H^+] = \sqrt{Ka_1.Ka_2}$$
 o $[H^+] = \sqrt{Ka_2.Ka_3}$

Curvas de titulación o valoración Teoría del comportamiento de un indicador ácido base


$$H In + H_2O \rightleftharpoons H^+ + In^-$$


Indicador color ácido

Indicador color básico

Se ve el color ácido

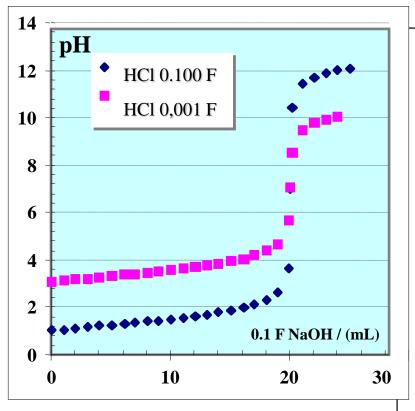
$$\frac{[In] color básico}{[HIn] color ácido} \le \frac{1}{10}$$

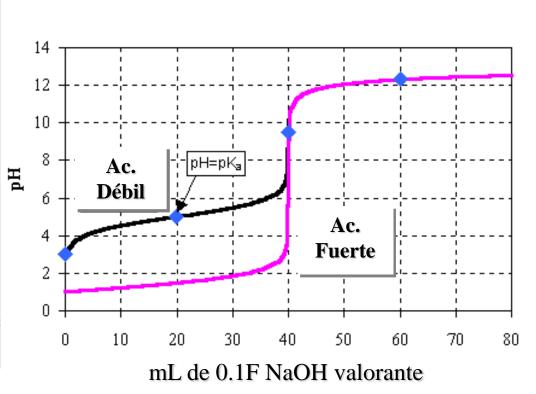
Se ve el color básico

$$\frac{[In]color básico}{[HIn]color ácido} \ge \frac{10}{1}$$

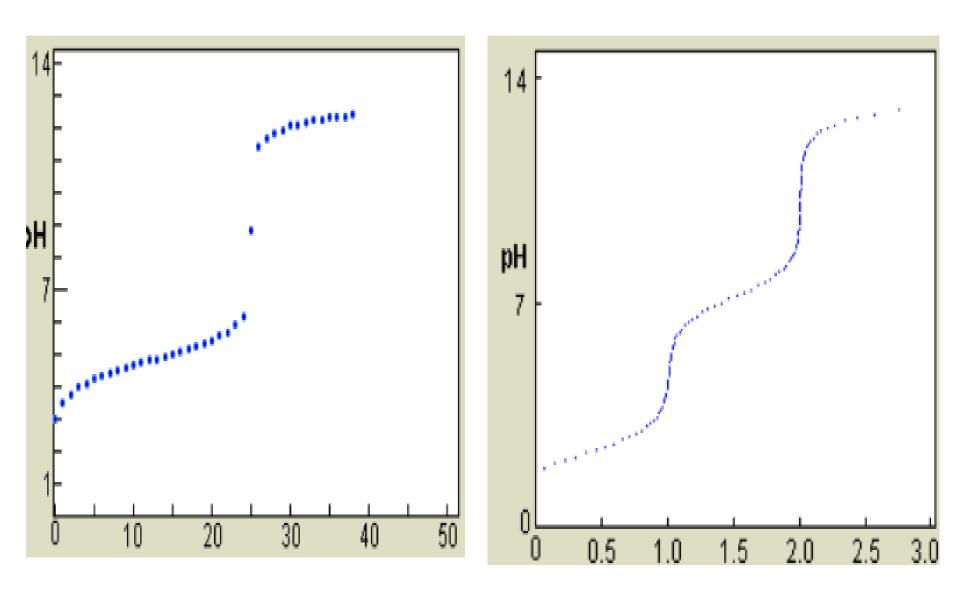
$$pH = pKa_I - 1$$

$$pH = pKa_{I} + 1$$


$$pH = pKa1 \pm 1$$


Intervalo de transición o viraje del indicador tabulado en libros

Curvas de titulación o valoración ¿Qué pasa cuando disminuye el salto de pH?


Al aumentar la dilución del ácido

Al disminuir la fuerza del ácido

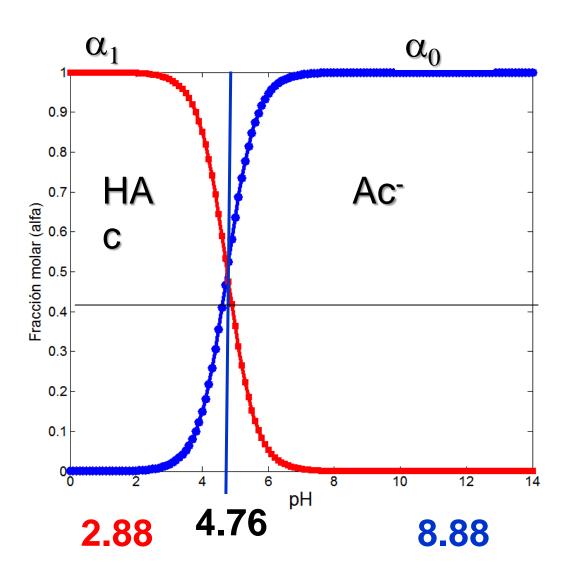
Curva de titulación de ácido diprótico (H_2A) con BF

Distribución de especies para una solución de HAc 0.1 F

Expresando todo en función del Ac:

$$Cf = \left[Ac^{-}\right] + \left[HAc\right] = \left[Ac^{-}\right] \left\{1 + \frac{\left[H^{+}\right]}{Ka}\right\} = \left[Ac^{-}\right] \frac{1}{\alpha_{0}}$$

$$\left[Ac^{-}\right]$$


 $\alpha_0 = \frac{\left[Ac^-\right]}{Cf}$ también α_{Ac} (*Harris*). Otros libros lo indican al revés

Expresando todo en función del HAc, se calcula α_1 o α_{HAc}

$$Cf = [HAc] \left\{ 1 + \frac{Ka}{[H^+]} \right\} = [HAc] \frac{1}{\alpha_1}$$

$$\alpha_1 = \frac{[HAc]}{Cf}$$

Distribución de especies para una solución de HAc 0.1 F

Distribución de especies en función del pH para un ácido diprótico H₂M

- En el transcurso de la valoración de un ácido poliprótico se producen variaciones tanto del pH como de las especies presentes en el sistema.
 - > Diagrama de distribución de especies α (fracción molar) vs. pHs

$$H_{2}M \leftrightarrow HM^{-} + H^{+}$$

$$\Sigma \alpha = 1 = 1$$

$$HM^{-} \leftrightarrow A^{2-} + H^{+}$$

$$K_{a1} = \frac{\left[HM^{-}\right]\left[H^{+}\right]}{\left[H_{2}M\right]}$$

$$K_{a2} = \frac{\left[M^{2-}\right]\left[H^{+}\right]}{\left[HM^{-}\right]}$$

$$\Sigma \alpha = 1 = \alpha_0 + \alpha_1 + \alpha_2 = \frac{\left[M^{2-}\right]}{C_f} + \frac{\left[HM^{-}\right]}{C_f} + \frac{\left[H_2M\right]}{C_f}$$

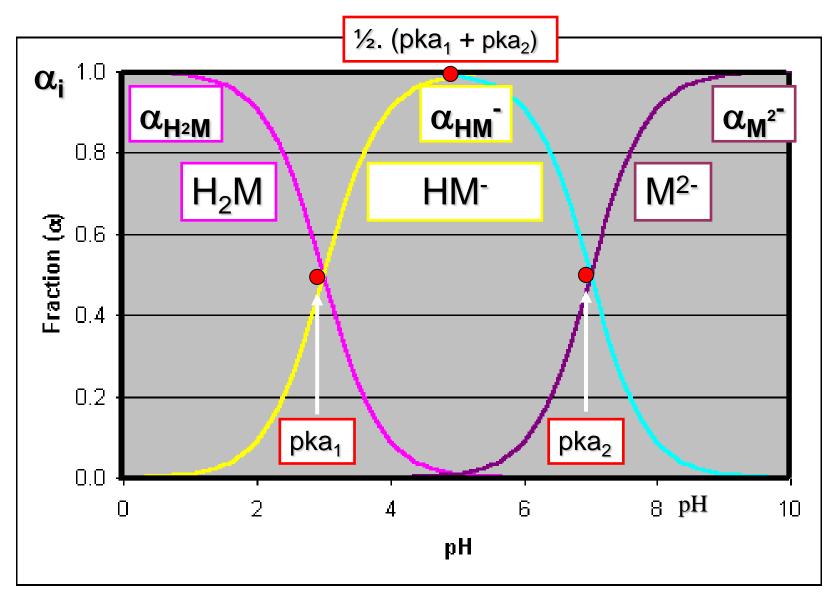
$$\alpha_0 = \frac{\left[M^{2-}\right]}{C_f}$$

$$\alpha_1 = \frac{\left[HM^-\right]}{C_f}$$

$$\alpha_2 = \frac{\left[H_2 M \right]}{C_f}$$

$$\alpha f_{(pH)}$$

Distribución de especies en función del pH para un ácido diprótico H₂M


$$\begin{split} C_{f} &= \left[M^{2-}\right] + \left[HM^{-}\right] + \left[H_{2}M\right] = \left[M^{2-}\right] + \left[M^{2-}\right] \frac{\left[H^{+}\right]}{K_{a2}} + \left[M^{2-}\right] \frac{\left[H^{+}\right]^{2}}{K_{a1}K_{a2}} \\ C_{f} &= \left[M^{2-}\right] \left\{1 + \frac{\left[H^{+}\right]}{K_{a2}} + \frac{\left[H^{+}\right]^{2}}{K_{a1}K_{a2}}\right\} \rightarrow \alpha_{0} = \frac{\left[M^{2-}\right]}{C_{f}} \\ &\frac{1}{\alpha_{0}} = \left\{1 + \frac{\left[H^{+}\right]}{K_{a2}} + \frac{\left[H^{+}\right]^{2}}{K_{a1}K_{a2}}\right\} \\ &\frac{1}{\alpha_{1}} = \left\{1 + \frac{K_{a2}}{H^{+}} + \frac{\left[H^{+}\right]}{K_{a1}}\right\} \quad y \quad \frac{1}{\alpha_{2}} = \left\{1 + \frac{K_{a1}}{H^{+}} + \frac{K_{a1}K_{a2}}{H^{+}}\right\} \end{split}$$

Tener cuidado, en el libro Harris se usa la nomenclatura al revés, llamando alfa cero a la fracción molar de la especie que no tiene carga.

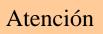
Llamamos α_0 a la especie sin protones!

Diagrama de distribución de especies en función del pH para el ácido diprótico H₂M

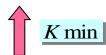
Diagrama de distribución de especies - α (fracción molar) vs. pHs

Repaso: cuantitatividad en la valoración de un AF con una BF

1) Plantear reacción de la valoración


$$H^+ + OH^- \rightarrow H_2O$$

2) Plantear la Constante de Equilibrio de la reacción


$$\text{Keq} = \frac{1}{\text{Kw}} = 10^{14}$$

3) Verificar la cuantitatividad de la valoración

$$K_{\min,99,9\%} = \frac{1}{[OH^{-}] \times [H^{+}]} = \frac{1}{[0.1 \times 0.1/100]^{2}} = 10^{8}$$

 $\text{Keq} \ \rangle \ \text{K}_{\min 99.9\%}$

4) Establecer un Error para la Elección del Indicador

Repaso: Cuantitatividad en la valoración de un ad con una BF

1) Plantear reacción de la valoración

$$HA + OH^- \rightarrow H_2O + A^-$$

2) Plantear la constante de equilibrio de la reacción

$$Keq = \frac{Ka}{Kw}$$

Ejemplo:
$$1.75 \times 10^{-5} / 10^{-14}$$

= 1.75×10^{9}

3) Verificar la cuantitatividad de la valoración

$$K_{\min,99,9\%} = \frac{\left[A^{-}\right]}{\left[OH^{-}\right] \times \left[AH\right]} = \frac{\left[0.1 \times \frac{99.9}{100}\right]}{\left[0.1 \times 0.1 / 100\right]^{2}} = 10^{7}$$

$$Keq \ge 10^{7} \longrightarrow Ka \ge 10^{-7}$$

$$Keq \ge 10^7 \longrightarrow Ka \ge 10^{-7}$$

4) Establecer un error para la elección del indicador

Factibilidad de titulaciones de ácidos polipróticos

Reacción hasta el primer punto de equivalencia

$$H_2A + OH^- \Leftrightarrow HA^- + H_2O \Rightarrow Keq = \frac{Ka_1}{Kw} = \frac{1}{Kb_1}$$

Grado en que la reacción no es completa de esta etapa

Hay tres equilibrios posibles:

$$HA^{-} + H_{2}O \rightleftharpoons A^{2-} + H_{3}O^{+} \Longrightarrow Keq = Ka_{2}$$

$$HA^{-} + H_{2}O \rightleftharpoons H_{2}A + OH^{-} \Rightarrow Keq = Kb_{1} = \frac{Kw}{Ka_{1}}$$

$$H_3O^+ + OH^- \rightleftharpoons 2H_2O \Rightarrow Keq = \frac{1}{Kw}$$

$$2 \text{HA}^- \Leftrightarrow \text{A}^{2-} + \text{H}_2 \text{A} \Rightarrow \text{Keq} = \text{Ka}_2 \times \frac{\text{Kw}}{\text{Ka}_1} \times \frac{1}{\text{Kw}} = \frac{\text{Ka}_2}{\text{Ka}_1}$$

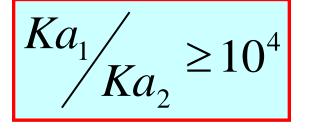
Factibilidad de titulaciones de ácidos polipróticos

$$2HA^{-} \rightleftharpoons A^{2-} + H_{2}A$$

$$(1-2x) \rightleftharpoons x \qquad x$$
(Si asignamos : $[HA^{-}] = 1$ y $[A^{2-}] = [H_{2}A] = x$)

Keq =
$$\frac{\text{Ka}_2}{\text{Ka}_1}$$
 = $\frac{\left[A^{2-}\right]\left[H_2A\right]}{\left[HA^{-}\right]^2}$ = $\frac{x^2}{(1-2x)^2}$

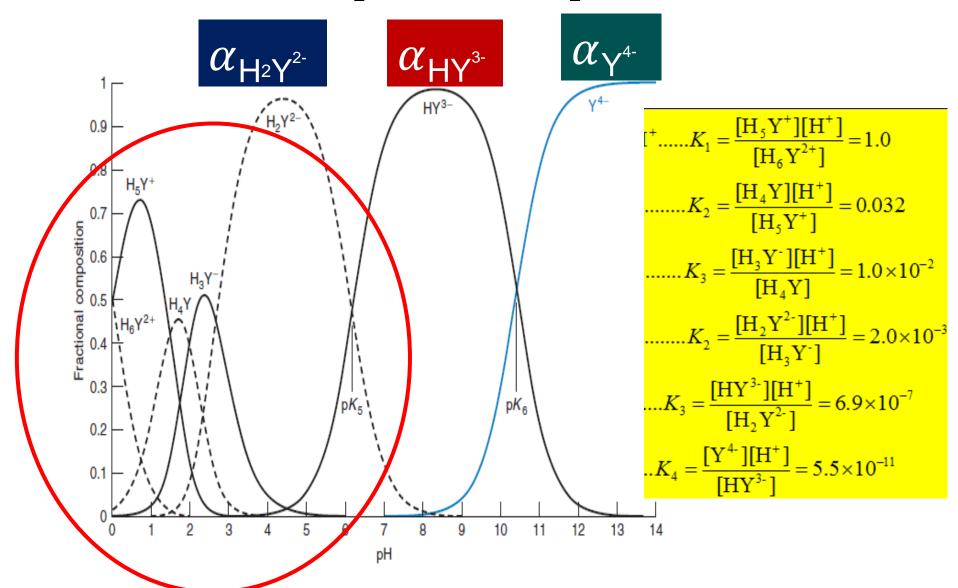
Si se admite un error del 1 %, entonces x (producto) quedaría igual a 0.01


Importante: el concepto es al revés de como lo veíamos antes...

$$\Rightarrow \text{Si } x = 0.01 \Rightarrow \frac{\text{Ka}_2}{\text{Ka}_1} \le 10^{-4} \text{ o} \frac{\text{Ka}_1}{\text{Ka}_2} \ge 10^4$$

Factibilidad de titulaciones de ácidos polipróticos

Conclusión


La mínima relación que debe existir entre las constantes de acidez para realizar la titulación cometiendo un error del 1% será:

y análogamente en el caso de ácidos tripróticos (H₃A)

$$\frac{Ka_2}{Ka_3} \ge 10^4$$

EDTA: distribución de especies Un caso en el que no se cumple lo anterior

Curvas de valoración de ácidos polipróticos con bases fuertes

$$H_2A + OH^- \rightleftharpoons HA^- + H_2O$$

$$HA^- + OH^- \rightleftharpoons A^{2-} + H_2O$$

$$Keq = \frac{Ka_1}{Kw}$$

$$Keq = \frac{Ka_2}{Kw}$$

Requisito para obtener 2 puntos de equivalencia recordar que Keq debe ser mayor a 10⁷)

- 1) $Ka_1 \ge 10^{-7}$
- 2) $Ka_2 \ge 10^{-7}$
- $3) \frac{\mathrm{Ka}_{1}}{\mathrm{Ka}_{2}} \ge 10^{4}$

0.1000F NaOH

$$V_{eq1} = 25.00 \pm 0.50_{(\pm 2\%)} \, mL$$

$$V_{eq2} = 50.00 \pm 0.25_{(\pm 0,5\%)} \, mL$$

25.00 mL de 0.1000F ác. maleico

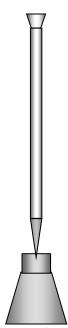
 K_{a1} : 1.20×10⁻² K_{a2} : 5.96×10⁻⁷

Curvas de valoración de ácidos polipróticos con bases fuertes

Reacciones de titulación:

$$A^{2-} + H^+ \rightleftharpoons HA^-$$

$$HA^- + H^+ \rightleftharpoons H_2A$$


$$\frac{Ka_1}{Ka_2} \ge 10^4$$

$$Kb_2 \ge 10^{-7}$$

$$Kb_1 \ge 10^{-7}$$

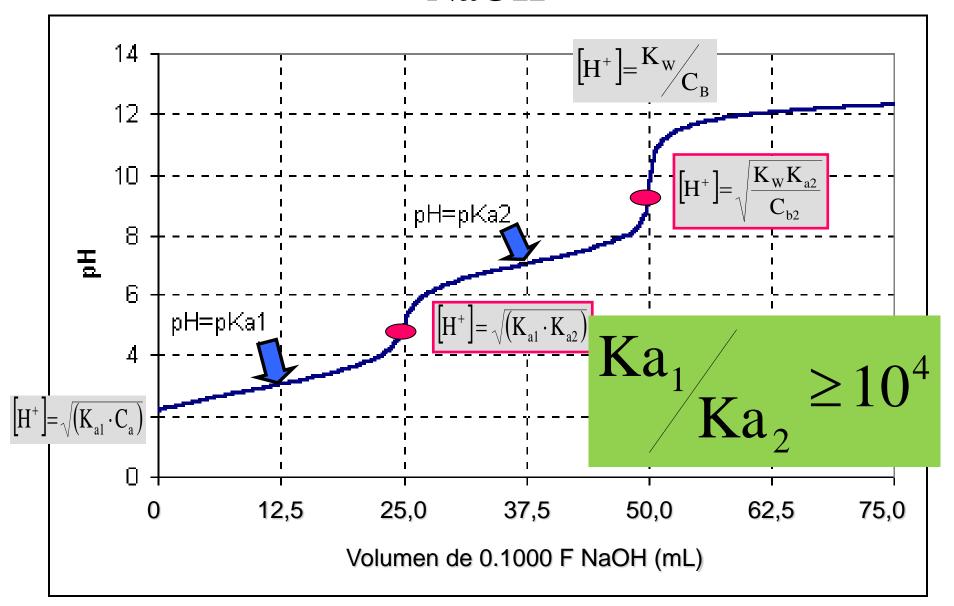
$$Keq = \frac{1}{Ka_2} = \frac{Kb_2}{Kw}$$

$$Keq = \frac{1}{Ka_1} = \frac{Kb_1}{Kw}$$

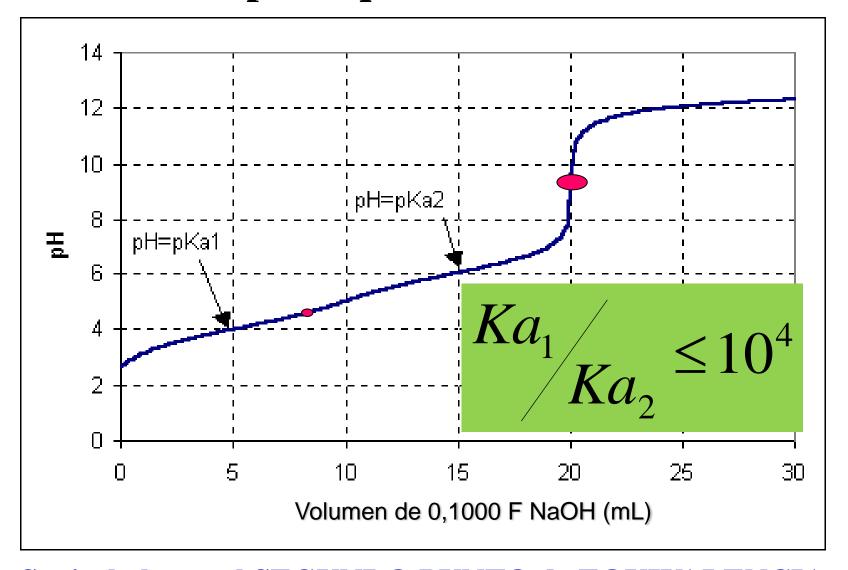
0.1000F HCL

$$V_{eq1} = 25.00 \text{ mL}$$

$$V_{eq2} = 50.00 \text{ mL}$$

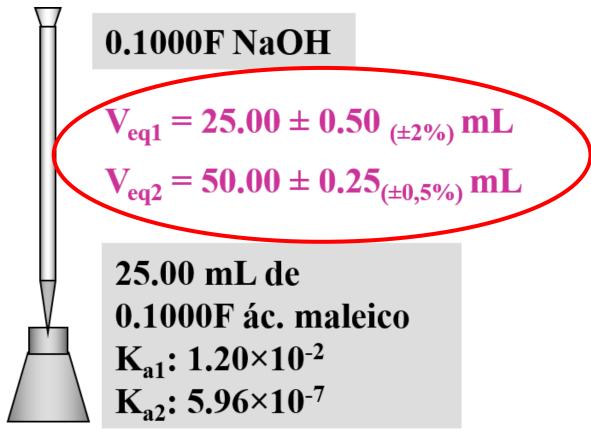

25.00 mL de

0.1000F Na₂CO₃


 K_{a1} : 4.45×10⁻⁷

 K_{a2} : 4.69×10⁻¹¹

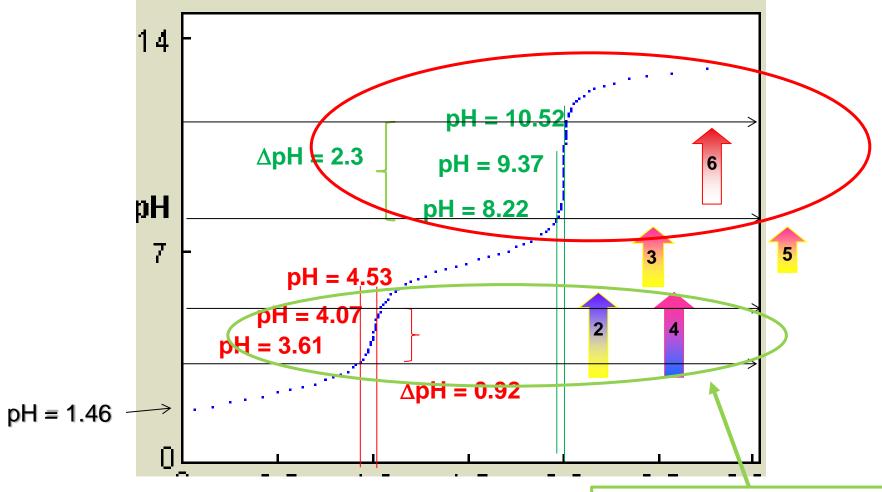
Curva de valoración del ácido maleico con NaOH



Curva de valoración de un ácido diprótico que no cumple requisito con NaOH

Se titula hasta el SEGUNDO PUNTO de EQUIVALENCIA

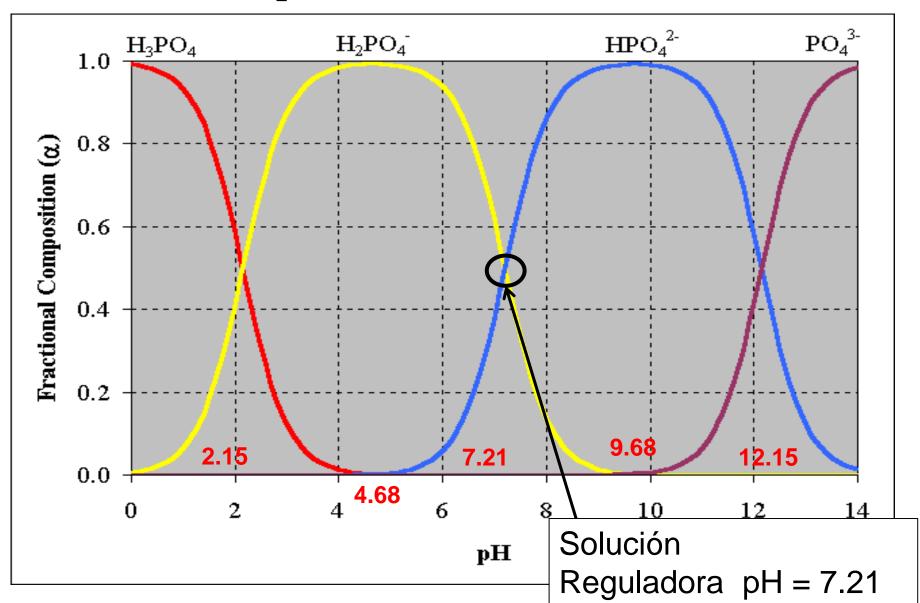
Especies químicas presentes en diferentes zonas de las curvas de valoración



Recordar: BALANCE DE MASA

¿Como se calculan los puntos?

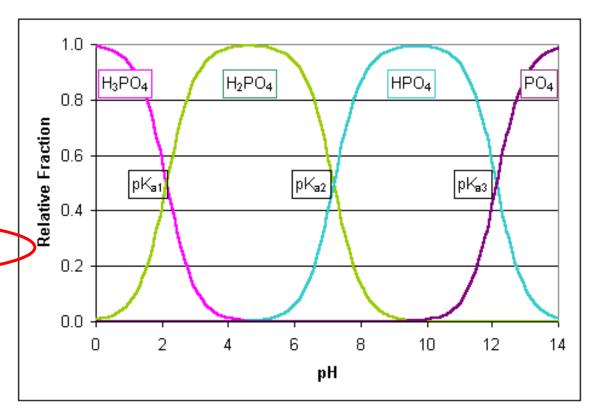
Especies químicas presentes en diferentes zonas de las curvas de valoración


Tipo de Titulación	Inicio	Antes	Punto de Equivalencia (1º PE)	Después
V _{alícuota (ml)} 25.00	V _{titulante} = 0.00	VE – Er ₁ % =24.50	VE (1)	VE+Er ₁ % =25.50
H_2M	a.d	SR1	Anfolito	SR2
Base Fuerte	$[H^+] = \sqrt{(K_{a1} \cdot C_a)}$	$\left[H^{+}\right] = K_{a1} \cdot \frac{C_{a}}{C_{b1}}$	$\left[H^{+}\right] = \sqrt{\left(K_{a1} \cdot K_{a2}\right)}$	$\left[H^{+}\right] = K_{a2} \cdot \frac{C_{b1}}{C_{b2}}$
рН	1.46	3.61	4.07	4.53
	V _{tit.} = 37.50	VE – Er ₂ %= 49.75	VE (2)	VE+Er ₂ %=50.25
H_2M	SR2	SR2	Sal básica	BF en exc
Base Fuerte	$[H^+]=K_{a2}$	$\left[H^{+}\right] = K_{a2} \cdot \frac{C_{b1}}{C_{b2}}$	$\left[H^{+}\right] = \sqrt{\frac{K_{W}K_{a2}}{C_{b2}}}$	$[H^+] = \frac{K_W}{C_B}$
рН	6.22	8.22	9.37	10.52

- 2 Azul de bromofenol (3,0 4,6) x
- 3 Alizarina (5,5 6,8) x
- 4 Rojo congo (3,0 5,0) x
- 5 Rojo neutro (6.8 8.0) x
- 6 Fenolftaleina (8,3 10,0) SI

Salto muy pequeño, pese a que el error es 4 veces mayor!!

Distribución de especies en función del pH para el ácido fosfórico

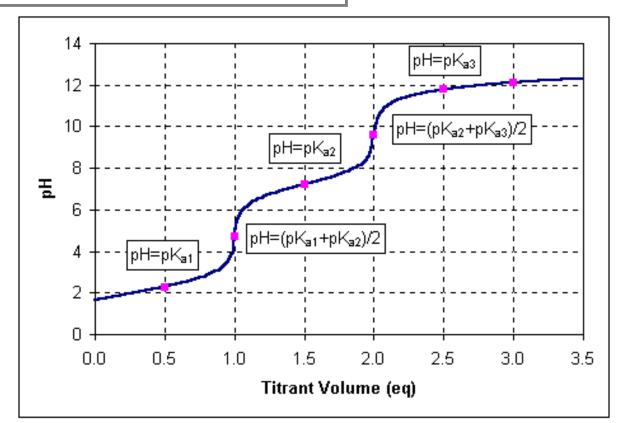


Curvas de valoración del ácido fosfórico con NaOH

$$\checkmark$$
 K_{a1} = 7.11. 10⁻³
 \checkmark K_{a2} = 6.32. 10⁻⁸

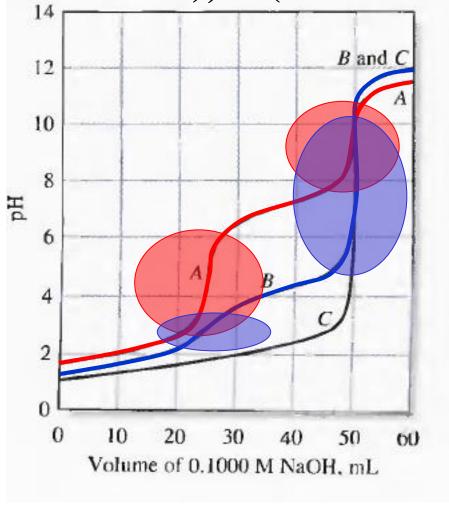
$$\checkmark K_{a2} = 6.32. 10^{-8}$$

$$\checkmark$$
 K_{a3} = 7.10. 10⁻¹³


El uso de α sirve para calcular las cocentraciones relativas a cada pH

Curvas de valoración del ácido fosfórico con NaOH

$$H_{2}O + H_{3}PO_{4} \leftrightarrow H_{3}O^{\dagger} + H_{2}PO_{4}^{2} \Rightarrow K_{al} = \frac{[H_{3}O^{\dagger}][H_{2}PO_{4}]}{[H_{3}PO_{4}]}$$

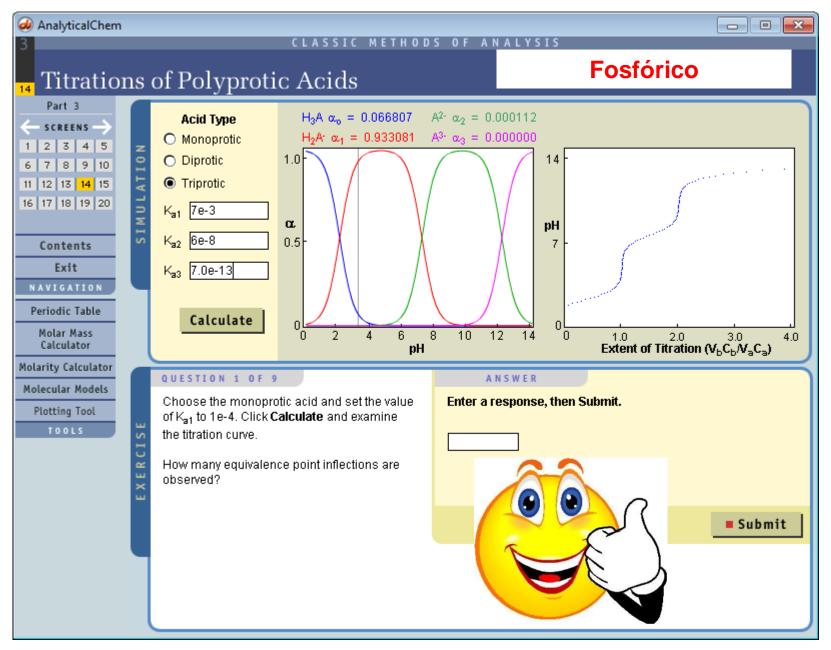

$$H_{2}O + H_{2}PO_{4}^{2} \leftrightarrow H_{3}O^{\dagger} + HPO_{4}^{2-} \Rightarrow K_{a2} = \frac{[H_{3}O^{\dagger}][HPO_{4}^{2-}]}{[H_{2}PO_{4}]}$$

$$H_{2}O + HPO_{4}^{2-} \leftrightarrow H_{3}O^{\dagger} + PO_{4}^{3-} \Rightarrow K_{a3} = \frac{[H_{3}O^{\dagger}][PO^{3-}]}{[HPO_{4}^{2-}]}$$

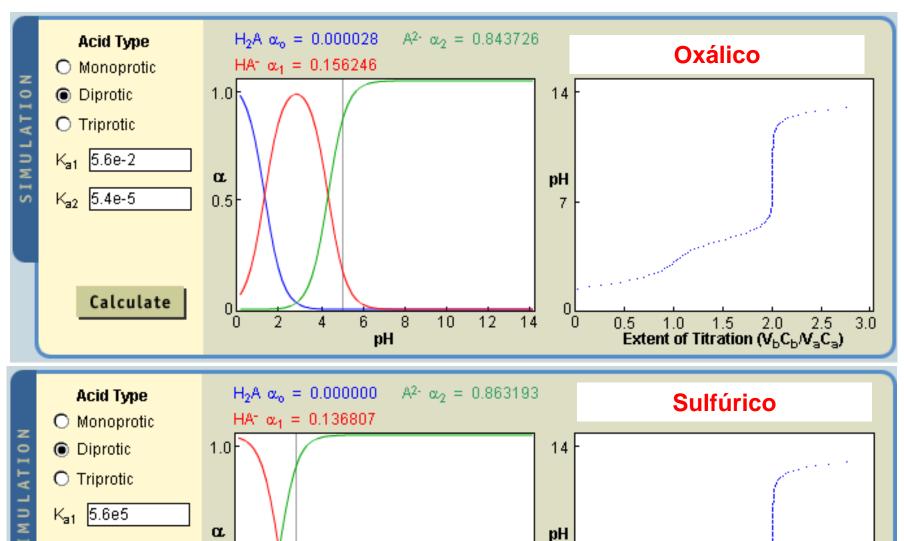
Comparación de curvas de titulación:

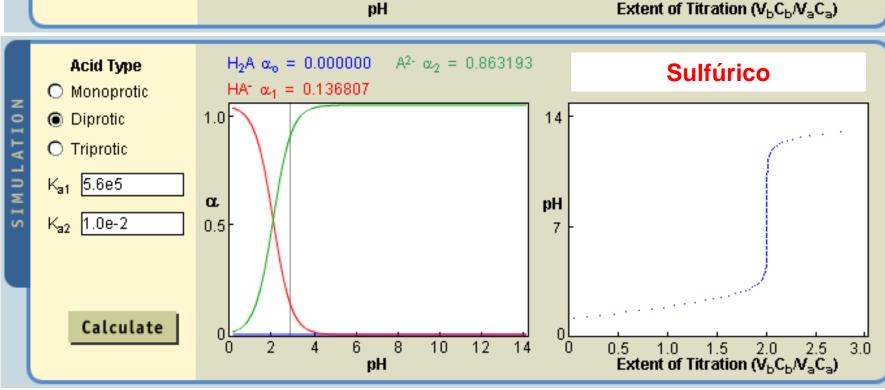
A (ác. fosfórico), B (ác. oxálico) y C (ác. sulfúrico)

✓
$$K_{a1} = 7.11. \ 10^{-3}$$
✓ $K_{a2} = 6.32. \ 10^{-8}$
✓ $K_{a3} = 7.10. \ 10^{-13}$

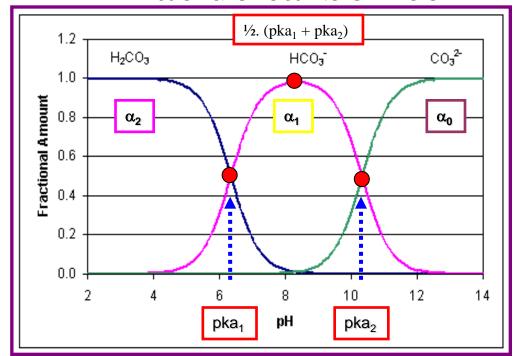

B: Ac. oxálico:

$$\checkmark$$
 K_{a1} = 5.6. 10⁻²
 \checkmark K_{a2} = 5.4. 10⁻⁵


C: Ác. sulfúrico:


$$✓ K_{a1} = ↑$$
 $✓ K_{a2} = 1.0. 10^{-2}$

"Química Analítica", Skoog, West, Holler (6ta Ed. 1995), pag. 205, Fig.11-3



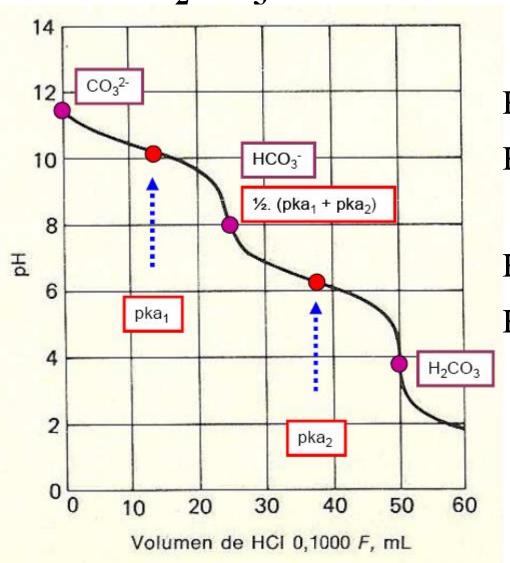
"Fundamentos de Química Analítica", Skoog, West, Holler, Crouch (8va Ed. 2005), CD con simulaciones y tutoriales

Distribución de especies en función del pH para el ácido carbónico

$$\alpha_{H_2CO_2} = \frac{[H^+]^2}{[H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}} = \frac{[H_2CO_3]}{totalCO_2(aq)}$$

$$\alpha_{HCO_3^-} = \frac{[H^+]K_{a1}}{[H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}} = \frac{[HCO_3^-]}{totalCO_2(aq)}$$

$$\alpha_{CO_3^{2^-}} = \frac{K_{a1}K_{a2}}{[H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}} = \frac{[CO_3^{2^-}]}{totalCO_2(aq)}$$


Curvas de valoración de una base polifuncional con HCL

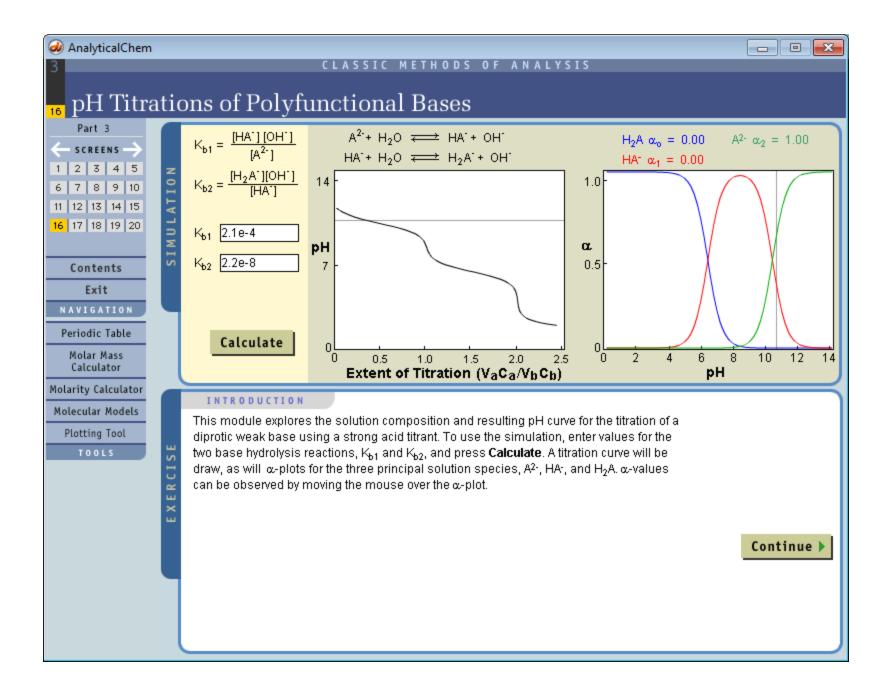
$$H_2O + A^3 \rightleftharpoons OH^- + HA^{2-}$$

 $H_2O + HA^{2-} \rightleftharpoons OH^- + H_2A^-$
 $H_2O + H_2A^- \rightleftharpoons OH^- + H_3A$

$$K_{b_1} = \frac{[OH^-][HA^{2-}]}{[A^{3-}]} K_{b_2} = \frac{[OH^-][H_2A^-]}{[HA^{2-}]} K_{b_3} = \frac{[OH^-][H_3A]}{[H_2A^-]}$$

$$K_{b_1} = \frac{K_{w}}{K_{a_3}}$$
 $K_{b_2} = \frac{K_{w}}{K_{a_2}}$ $K_{b_3} = \frac{K_{w}}{K_{a_1}}$

Curva para la valoración de 25.00 mL de Na₂CO₃ 0.1000 F con HCl 0.1000 F



$$Ka_1 = 4.5 \times 10^{-7}$$

$$Ka_2 = 4.7 \times 10^{-11}$$

$$Kb_1 = Kw/Ka_2 = 2.1x10^{-4}$$

$$Kb_2 = Kw/Ka_1 = 2.2x10^{-8}$$

Diseño de solución reguladora (SR)

•Requisitos:

- ✓ pH
- ✓ Volumen de la SR a preparar
- ✓ Concentración formal de la SR

$$C_{SR} = [AH] + [A^{-}]$$

- •Elección del par ácido/base conjugado
- ✓ El pH de la SR a preparar debe encontrarse dentro de la zona:

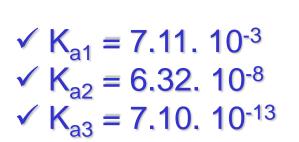
✓ Esto asegura que la Efectividad esté comprendida entre:

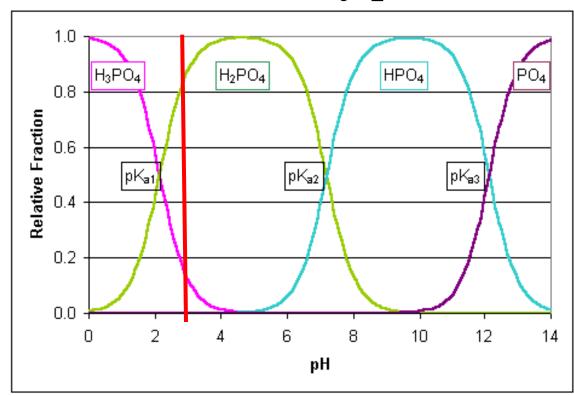
Efectividad debe variar entre
$$\approx \frac{10}{1}$$
 a $\frac{1}{10}$

•Cálculo de las Concentraciones de

$$[AH]y[A^-]$$

para lograr pH deseado y C_{SR}.


(se verá en detalle en trabajo práctico)


Diseño de una solución reguladora

- 1. Identificar pH usando la curva de distribución de especies.
- 2. Entender la diferencia entre prepararla a partir de:
 - a) ácido o la base conjugada más agregado de base o ácido fuerte, o
 - b) de las sales correspondientes.
- 3. Hacer el cálculo de cantidades necesarias en cada caso para llegar al pH y $C_{\rm f}$ deseados.

Ejemplo:

Volumen = 250.0 mL, F = 0.100 F y pH = 3.0

Se elige el par H₃PO₄/H₂PO₄⁻ Pero, ¿cómo se prepara si se parte de ácido o ambas sales?

Diseño de una solución reguladora

•Causas de Errores (pH teórico vs pH real)

- ✓ Valor Ka erróneo
- ✓ Simplificación en los cálculos de H⁺
- ✓ Ecuación Debye Hückel cálculos erróneos de γ por \uparrow μ

$$\log \gamma_i = -0.509 \, Z_i^2 \sqrt{\mu}$$

$$\mu = \frac{1}{2} \sum C_i Z_i^2$$

$$a_{H^{+}} = Ka \frac{a_{HA}}{a_{A^{-}}} = Ka \frac{[HA] \gamma_{HA}}{[A^{-}] \gamma_{A^{-}}}$$

•Preparación de la SR

✓ Antes de enrasar, hacer ajuste al pH deseado adicionando un AF o una BF frente a la lectura de un pHmetro previamente calibrado con SR Patrón o estandar

Titulación en disolventes no acuosos

Titulaciones ácido-básicas en disolventes no acuosos

Razones para su aplicación:

- > Reactivos o productos insolubles en agua.
- > Reactivos o productos que reaccionan con el agua.
- Para un analito que es un ácido o una base **demasiado débil** para su titulación en agua (K_a o K_b < 10^{-7}).

Podrán titularse ácidos débiles con Bases Fuertes en disolventes "más básicos que el agua" y análogamente bases débiles con Ácidos Fuertes en disolventes "más ácidos que el agua"

Titulaciones ácido-básicas en disolventes no acuosos

En agua: $NH_3 + H_3O^+ \rightleftarrows NH_4^+ + H_2O$

En ácido acético: $NH_3 + CH_3COOH_2^+ \rightleftarrows NH_4^+ + CH_3COOH$

Al ser el ácido acético más ácido que el agua, hace que el NH₃ actúe o se comporte como una base mas fuerte y en consecuencia la reacción de titulación se encontrará más desplazada a la derecha.

Cuantitatividad de una reacción ácido-base en disolvente no acuoso

La cuantitatividad en el punto de equivalencia depende de:

1. Constante de disociación del soluto en el DISOLVENTE (K_a* o K_b*)

- 2. Constante de autoprotolisis del DISOLVENTE (K_{auto})
 - > Representa al equilibrio donde una molécula del disolvente funciona como ácido y otra molécula como base
 - 3. Constante dieléctrica (D) del DISOLVENTE

Elección de un disolvente en titulaciones acido-básicas

Se debe considerar:

- 1. La solubilidad del soluto a titular en dicho disolvente
- 2. la constante de autoprotolisis del disolvente (Kauto)

Cuanto menor sea su valor mayor será la cuantitatividad de la reacción del soluto con el titulante:

Cuando titulamos bases débiles con AF:

Cuando titulamos ácidos débiles con BF:

$$Keq = \frac{Ka^*}{K \text{ auto}}$$

3. La constante dielétrica (D)

Cuanto mayor sea su valor, mayor será el grado de cuantitatividad de la reacción en el punto de equivalencia (en el caso de solutos no cargados).

Ejemplo

Analizar la factibilidad (Kmin=10⁷) y de titulación del analito HA⁺ en **medio acuoso** y en **metanol** con una base fuerte (NaOH 0.1000 F en a- medio acuoso y metóxido de litio 0.1000 F en metanol). Calcular las Keq en ambos disolventes y analizar la influencia de D del medio. Datos:

Disolvente	Ka	Kauto	D
Agua	10 ⁻⁸	10-14	78.5
Metanol	10 -9	2 x 10 ⁻¹⁷	32.6

Kmin ≈ 10^7

Reacción en medio acuoso: $HA^+ + OH^- \rightarrow HA + H_2O$ $Keq = Ka/Kw = 10^6$ **NO CUANTITATIVA**

Reacción en medio metanólico: $HA^+ + CH_3O^- \rightarrow HA + CH_3OH$ Keq = Ka*/Kauto = 10^{-9} / 2. 10^{-17} = 2. 10^7 **CUANTITATIVA**

CONCLUSION: La reacción se favorece en medio metanólico debido a que la constante dieléctrica, aún siendo mas baja que la del agua, no influye ya que no hay separación de cargas por tratarse de un soluto cargado.