UNL

LADAQ

Third-order data modelling – HPLC-EEM data analysis

Methodology 1 Collection of fractions

HPLC

Flow rate: 2 mL min-1

- For each sample:
- 1 Chromatographic run collecting 25 fractions, every 2 s = 2 min
- 25 EEMs = 40 min.

Methodology 2 Multi-chromatographic run / Multi-excitation

Flow rate: 2 mL min-1

- · For each sample:
- Chromatographic recording time-emission matrix at fixed excitation wavelength (different excitation wavelength for each run) = 40 min

Methodology 3 On-line EEM detection

Work in Process

Flow rate: 0.5 mL min-1

- For each sample:
- Chromatographic recording 25 sequential EEMs = 7 min

Analysis time per sample

(HPLC + FD)= 45 min

Matrix size

(J×K×L): 25×17×25

Data pre-processing:

EEM* smoothing

Data processing:

PARAFAC, APARAFAC, MCR-ALS,

U-PLS/RTL

Analysis time per sample 40 min

Matrix size

 $(J \times K \times L)$: 10×121×25

Data pre-processing:

TEM smoothing, Peak alignment

TEM baseline correction

Data processing:

PARAFAC, APARAFAC, MCR-ALS,

U-PLS/RTL

Analysis time per sample (HPLC + FD) = 7 minMatrix size $(J\times K\times L)$: 15×28×15 Data pre-processing: TEM smoothing Data processing:

Sequential EEMs ≡ Time(J)

UNL

LADAQ

Third-order data modelling – HPLC-EEM data analysis

General features

Minimal data pre-processing
Simple data processing
Semi-automated data
generation
Three instruments are
required
Time consuming

3rd order data (TEEC*)

Trilinear data
High selectivity in the three
modes

4-way data array (Conc-TEEC)

Non-quadrilinear
Breaking mode=Elution time
(Peak shifting between
samples)

General features

Complex data pre-processing
Simple data processing
Automated data generation
One instrument is required
Time consuming

3rd order data (TEEC*)

Non-trilinear data
Breaking mode=Elution time
(Peak shifting within sample,
leading to a trilinear break in
excitation mode)
High selectivity in two modes

Low selectivity in one mode

General features

Minimal data pre-processing
Very complex data processing
Automated data generation
Two instruments are required
Non-time consuming

3rd order data (TEEC*)

Non-trilinear data
Breaking mode=Excitation
(Excitation is strongly affected by concentration/elution time)
High selectivity in the three modes